On a decomposition of conditionally positive-semidefinite matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Sparse Decomposition of Low Rank Symmetric Positive Semidefinite Matrices

Suppose that A ∈ RN×N is symmetric positive semidefinite with rank K ≤ N . Our goal is to decompose A into K rank-one matrices ∑K k=1 gkg T k where the modes {gk} K k=1 are required to be as sparse as possible. In contrast to eigen decomposition, these sparse modes are not required to be orthogonal. Such a problem arises in random field parametrization where A is the covariance function and is ...

متن کامل

Singular value inequalities for positive semidefinite matrices

In this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl‎. ‎308 (2000) 203-211] and [Linear Algebra Appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

singular value inequalities for positive semidefinite matrices

in this note‎, ‎we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique‎. ‎our results are similar to some inequalities shown by bhatia and kittaneh in [linear algebra appl‎. ‎308 (2000) 203-211] and [linear algebra appl‎. ‎428 (2008) 2177-2191]‎.

متن کامل

On a Parametrization of Positive Semidefinite Matrices with Zeros

We study a class of parametrizations of convex cones of positive semidefinite matrices with prescribed zeros. Each such cone corresponds to a graph whose non-edges determine the prescribed zeros. Each parametrization in this class is a polynomial map associated with a simplicial complex supported on cliques of the graph. The images of the maps are convex cones, and the maps can only be surjecti...

متن کامل

A determinantal inequality for positive semidefinite matrices

Let A,B,C be n× n positive semidefinite matrices. It is known that det(A+ B + C) + detC ≥ det(A+ C) + det(B + C), which includes det(A+B) ≥ detA+ detB as a special case. In this article, a relation between these two inequalities is proved, namely, det(A+ B + C) + detC − (det(A+ C) + det(B + C)) ≥ det(A+ B)− (detA+ detB).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1981

ISSN: 0024-3795

DOI: 10.1016/0024-3795(81)90289-5